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Critical behavior in a quasifractal Ising model
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A strongly nonuniform Ising model with ferromagnetic nearest-neighbor interactions on a regular triangular
lattice is considered. The interactions are assumed to be of two kinds: couplings of arbitrary large strength,
distributed between points forming a Siergkirgasket lattice, and infinitesimally small couplings acting within
all holes of the gasket. The weak interactions are, in general, allowed to vary in a hierarchical way. Using a
renormalization-group method, critical properties of the system are studied. In particular, a condition for the
occurrence of critical phenomena at nonzero temperatures is established. It is also shown that, in a special case,
the investigated model displays nonuniversal critical properfti&5063-651X96)14511-§

PACS numbe(s): 64.60.Ak, 61.43.Hv, 05.58.q, 05.70.Fh

I. INTRODUCTION holes of the SG lattice. Additionally, the infinitesimally
small interactions are parametrized by a hierarchy exponent,

The effect of inhomogeneity on the critical behavior of so as to allow them to vary in a hierarchical manner as in-
magnetic systems has been considered in various context§ahole triangles of increasing linear size are taken into ac-
e.g., disorder{1], coupling randomnesf2], quasiperiodic ~count. As a consequence of extreme disproportion between
structureq 3], or aperiodic structures with modulated inter- Strengths of interactions of the two types, the system is
actions on regular latticdd]. Very special examples of non- strongly nonuniform in all length scales. Thus, it resembles
uniform systems are models defined on fractal latticgs self-similar fractal systems, although it is defined on a trans-
Due to a Strong nonuniformit&on all |ength sca'és critical |ati0na||y invariant Iattice; so the model can be treated in
properties of systems in this category differ, in generaj’ conSOme sense as intermediate between fractal and Euclidean
siderably from those of respective translationally invariantSystems. Therefore, the considered strongly nonuniform
systemg5]. In particular, it seems to be impossible to clas-model is called here theuasifractallsing model.
sify fractal spin systems according to universality by a finite The presence of weak interactions inside holes of the SG
number of geometric parametd@_ It has been argued that Ia.tt|Ce causes the System to be |nf|n|te|y ram|f|ed. Then, at
critical phenomena at nonzero temperatures cannot occur {gast for some values of the hierarchy exponent, the model
short-interacting fractal models when their ramification ordercan be expected to reveal critical phenomena at nonzero tem-
is finite [7]. One of the most known finitely-ramified self- Peratures. Using here a renormalization-gréB®) method,
similar (scale-invariant systems is the nearest-neighbor it is shown that the system displays qualitatively different
(NN) Ising model on the Sierpaki-gasket(SG) lattice. In  Properties, according to the value of the hierarchy exponent,
spite of the fact that this model does not display nontrivialand a condition for the occurrence of nontrivial critical phe-
critical phenomena, it is especially interesting because of it§omena is established. For a special value of the hierarchy
distinctive thermodynamic properti€8]. On the other hand, €xponent, the system is proved to exhibit nonuniversal criti-
it has been shown that Ising systems defined on sG-likéal behavior. In this case, results obtained for the critical
lattices involving higher length generators acquire graduallyfemperature and the correlation length critical exponent
thermodynamic properties of the translationally invariantbecome exact as the interaction strength of weatkahole
Ising system on the triangular lattice, as the lattice construcinteractions tends to zero. The limit passing can be regarded
tion generators tend to infinity9]. Clearly, the behavior of @s & smooth Euclidean-to-fractal crossover, accomplished by
higher members of the SG family exemplifies a crossoveenhancing the nonuniformity of the system in consequence
from fractal to uniform(Euclidean structures. of diminishing the interaction strength for a part of the cou-

Generally, the inhomogeneity of lattice systems has twd?lings.
origins, i.e., the nonuniformity of lattices and variation of

intera_lctions. Itis welllknown that poth the types of inhomo- II. THE QUASIFRACTAL MODEL
geneity can affect critical properties of spin systems, com-
pared with properties of purhomogeneoyssystems. The The inhomogeneous spin Ising model considered in this

question of the influence of inhomogeneity on critical behav-paper is defined on a triangular lattice, which, as a whole, has
ior of spin systems belongs to the most important problems: triangle shapéor any finite number of lattice pointsThe
of the theory of critical phenomena. spinsoj=*1, i=1,2,..., arecoupled by ferromagnetic

In this paper, a ferromagnetic Ising model which, in someNN interactions of two kinds. Interactions of the first type,
sense, is intermediate between spin systems on fractal al are assumed to act only between points forming the SG
translationally invariant lattices, is considered. The modelattice, as shown in Fig. 1, while interactions of the second
involves NN interactions of two kinds, i.e., relatively large type are distributed inside all holes of the gasket. Couplings
couplings acting between points which form the SG latticeof the latter type are taken to be infinitesimally small. In
and infinitesimally small couplings distributed within all addition, these weak interactions are allowed to vary in
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FIG. 1. Configuration of interactions in the quasifractal model. x . e te et
The system of linear size®2a). The intrahole sublattices of linear
k k k

sizes: 2(b), 22 (c), and 2 (d). The double lines represent interac-

tions K, distributed on the SG sublattice. The dashed, solid, and

solid bold lines represent intrahole interactionse,, ande,, re- @ © ®
spectively.

FIG. 2. (a),(b),(c) Intrahole elementary triangles with appropri-
strength a&:l’“, e<1, ,u>0 when intrahole triangles of ate coupling§m=1 in (b), andl=1, m=1 in (c)]. (d),(e),(f) The
increasing linear sizes' 21=0,1, ... (in units of the lattice effect of the use of the relatior8.7) and (3.10 for local Boltz-
constank are taken into accourias depicted in Fig.)1 Con- ~ mann weights associated with respective triangles.
sequently, if the parameter, the so-called hierarchy expo-
nent, is nonzero, the weak couplings change in a hierarchicsizes 3, put down in gasket holes of linear size¥ With
manner. The interaction& are assumed to be relatively m=1+1, m+2,... . Theweak interactiong, are assumed
large, i.e.K>¢. to be of the form

Thus, the model represents strongly inhomogeneous Ising
systems of nonuniform coupling structures in all length 8|=81/”“|, I1=0,1, ... (2.2
scales. The inhomogeneity originates from an extreme dis-
proportion of strengths of the interactions and e, with eg=¢.

[=0,1,..., aswell as from their nonuniform distribution on
the lattice. The strong interactio§ act on the SG lattice,
whereas the weak interactioss, 1=0,1,. .., areassumed
to act inside all holes of the SG, and, fpr>0, they are Critical properties of the quasifractal model are studied
allowed to follow a hierarchical structure. In consequence ohere using a RG method based on the decimation transfor-
the special distribution of strong couplings, the model re-mation. It is well known that, in cases of infinitely ramified
sembles a fractal system defined on the SG lattice. Howevesystems, just as in the case of the system under examination
owing to the occurrence of weak couplings, the system idere, successive applications of this transformation generate
infinitely ramified, and can be expected to reveal critical pheinteractions of new types and, thereby, the decimation cannot
nomena at nonzero temperatufasleast for some values of be exactly performed. However, as will be argued below, the
) as long ag>0. application of a renormalization transformati@RT) to the

Accordingly, the model presented in this paper can bestudied system withu<2 can be simplified by modifying
used to study the question of disappearing nontrivial criticalocal Boltzmann weight$10] which involve weak interac-
phenomena as a result of a smooth passage from infinitely tions. The modification of these Boltzmann weights in the
finitely ramified systems, through a smooth enhancing of thease ofu<2 will be shown to enable one to obtain RG
inhomogeneity of couplingdAs yet, this problem has not equations in a closed form.
been investigatefllt will be shown below that the model is
_also useful fqr examining the questic_m of how i_n_teraction A. Boltzmann weights for e<1
inhomogeneities on all length scales influence critical prop- o
erties of Ising systems, compared with péh®mogeneous To present the way of approximating local Boltzmann
systems. weights involving weak interactions, consider spins,

The Hamiltonian for the model is given by oj, andoy placed in vertices of an elementary triangle in a
corner of a hole of the SGsee Fig. 2a)]. Then, the corre-
sponding Boltzmann weight of the spin configurations
(oi,0,0y) is given by

Ill. RG TREATMENT OF THE MODEL FOR p=<2

H({o})/kgT=—K 2 oo~ 2 J E 0'0'J, (2.1)

(i,i)sc WO(O-i | ,Uk):eKai(aj+gk)+sojUk. (31)

where the first summation runs over NN pairs of sites in theSincee <1, possible critical phenomena in the studied sys-
SG lattice, the second summation is over construction leveltem can be expected at rather low temperatures, i.e., at
of intrahole triangles, and the third summation is over NNK>1. Hence, restricting oneself # being very large, one
pairs of lattice points on edges of all intrahole triangles ofgets for the spin configuratiodst,—,—} and{—,+,+}
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Wo(ai,0j,0¢) =€ “vo(aj,0j,0)+0(e) (3.2

JAN

with LA%{A}A\

vo(o, 0y, ay) = Tlo W (3.3 O o
and

s=e 2, (3.9
while for remaining configurations of spins at vertices of the /\
elementary triangle /RT
Wo(oi,0,0¢) =€ “vo(0j,0j,0y). (3.5 /\

Consequently, the Boltzmann weightg, can be approxi- /\

mated fors <1 andK>1 by the weights, (up to the factor /\/W\
e ).

Analogously, one can express other local Boltzmann

weights, associated with elementary triangles situated inside ©

holes of the SGsee Figs. th) and Zc)]. It proves that, in the

case ofu=<2, all local intrahole Boltzmann weights FIG. 3. The effect of using the RT combined with the relations
(3.7 and(3.10. (a) The initial quasifractal system of a finite linear

Wi m(oi, 0 ,00) = e#19i7j+ dmTiowt e Tjoy (3.6 size (the couplings are indicated in the same way as in Fig(H

The system after an application of the approximation for local

where ¢po=K, ¢ =¢,, |=1,2,..., can bewritten for the  Boltzmann weights, according to relatio3.7) and (3.10. The

spin configurationg+,—,—} and{—,+,+} as black circles indicate spins over which the decoration-iteration
transformation is to be carried odt) The system after applying the

Wi (i ,0),00) =€ v m(i,0),01) + O(A| ne), 3.7 RT.

with 2(e), and Zf)]. Clearly, such a modification of local Boltz-

mann weights resembles the Migdal-Kadanoff moving-bond
Vim0, 0,0 =elheoiojt (mteloiok (3.9  RG proceduré11].

Ajp=e %" 1=01,..., m=01,..., 39 B. RG equations for u<2

_ o . ; : In cases ofu<2, possible critical properties of the system
where Ag o=, and, for remaining configurations of spins : . ;
connected with appropriate intrahole triangles, can be ex%:_an be studied by _applylng the relatio&7) and (3.10.
pressed as hen, the RT can mcjepedently _be performed for the sub-
system on the SG lattice and for intrahole subsystémso-
(3.10 ciated with holes of the SG lattizeby combining the deci-
mation transformation and the decoration-iteration
Accordingly, fore <1, the local Boltzmann weights, -, can transformatior{12]. It sh_ould be pointed out that the use of
be represented in the case;o& 2 by the weights, '(up to Eqs..(3.7) and (3.1@ for.mtrahole subsystems leads to a re-
the multiplicative constane ®). Such a represéntation is duction of the decimation transformation to the decoration-
approximate for two configurations of spins assigned to 4teration transformation, as shown in Fig. 3. Consequently,
given elementary triangle, and is exact for the remaining sh€MPloying Egs.(3.7), (3.10, and applying the decimation

spin configurations. The resulting approximations are highlyfansformation for the subsystem on the SG lattice and the
accurate for those weights, , which involve at least one decoration-iteration transformation for intrahole subsystems

interactionK (note thatA; g—0,1=0,1,. .., andAg,—0, (see Fig. 3, yields the relationgto ordersé? ande)
m=0,1,..., asK—), whereas, for weightsv, ,, with | KWK — 82 (3.11)
#0 andm#+ 0, associated with elementary triangles that are ! ' |
not adjacent to hole borders, they appear to be much less
precise. However, as will be shown below, when the RT is
performed, the approximation fb# 0 andm= 0 turns out to
be also reasonablg@rovided thatu<2). eiV=sf,,, 1=01,..., (3.13

It should be pointed out that the representation of the local
Boltzmann weightsw, ,, by the modified weighte, ,, [ac-  Where the superscript specifies the particular iteration of the
cording to Eqs(3.6)—(3.10] corresponds to a removal of the RT and subscripts in Eq$3.11) and(3.12 label strong in-
weak interactiorz, attributed to a given elementary intrahole teractions of different kinds. Interactions of both kinds are
triangle, and to respective changes of the remaining two inbetween NN pairs of spins, but the couplirigg) act along
teractions ascribed to the trianglas shown in Figs. @), edges of the largest triangle of the SG lattice, while the cou-

W m(0i,0),0¢) =€ “v| m(0i,0),0%).

K =K-&+e, (3.12
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FIG. 4. The SG subsystem of a renormalized quasifractal sys-

tem. (@) The distribution of renormalized strong couplings. The

white, hatched, and black upward-pointed elementary triangles arghere 6(')—exp( 2K(')) n=1.2,.

associated with different sets of NN interactiofis) The case of
i=1 (the system after the first application of the )RAIl interac-
tions K{? (connected with white and hatched trianglest along
borders of the SGi.e., along edges of the largest triangles of the
SG). (c) The case of successive iterations of the RE2). The
interactionsK {) (associated only with the white triangland the
interactionsKEf) (ascribed to hatched triang)esre distributed along
the borders of the SG.

plings K§" act along the remaining edges of the SG lattice,

as shown in Figs. @ and 4b). Thus, in the case of<1,

the first use of the RT generates NN interactions of two— 3(2/3) '] —

K51i+l):K I)+ K(I) 4[6(6 I))Z (5 I))4/(5(I))2

—(5g>54'>/a*5' )2], (323
KE =K = (88)2+e, (3.29
sl "V=(ef})? 1=0.1,..., 3.29

.5, ande=¢). The
division of the renormalized NN couplings into five classes
is a consequence of the specific nonuniform structure of the
system. Obviously, the numbers of couplings included in
particular classes are different. The numbers of the interac-
tions K{) andK{’, i>2, do not depend on the size of the
system and amount td; =6 andN,= 3, respectively. In a
finite renormalized system, which contain§ 8=23,. ..,
renormalized strong interactiorfacting on the SG lattige
there are N3=3(2—4) couplings of the typeK{,
N,=3(2"1-2) couplings K{’, and Ns=341
9 couplingsk{’. Accordingly, the relative

types, but it does not generate any two-point long-range coulumber of interactions from a given claghe number of

plings nor multipoint interactions.

As a result of the second iteration of the RWith the use
of relations(3.7) and(3.10 for the renormalized interactions
(3.11), (3.12, and(3.13)], there appear NN couplings of five
types[see Figs. &) and 4c)]. For K>1 and e<1, the
respective RG relations have the form

K@ =K —(s)2 (3.14

K@ =K - 2162+ (8)2 1+,  (3.15
K@ =K - [3(61M)2+(85M)2]+e,  (3.18
K£12):K(ll)_ %[5(5(11))2_(5(21))2], (3.17)
K@ =K —(85)2+eM (3.18
el?=(eY)? 1=01,..., (3.19

wheresV=exp(—2K®), n=1,2,... .5, andsM=¢{V.
Subsequent iterations of the R&ombined with relations
(3.7) and (3.10 for renormalized couplindsdo not lead to

interactions belonging to a given class per the total number
of strong interactionsis nonzero in the thermodynamic limit
only for the interactions of the typi{ .

It is seen from EQs(2.2), (3.13, (3.19, and(3.25 that,

for u<2, the weak interactions{”, i=1,2,.. ., do not in-
crease under the RT, |.e.g(')>s,('“) 1=0,1,...,
i=1,2,... . However, the relation$3.13, (3.19, and

(3.29 have been derived by taking advantage of the approxi-
mation (3.7), which, forl#0 andm+0, is not so well jus-
tifiable as in the case df=0 and/orm=0. Nevertheless,
leading contributions to any renormalized weak interactions
(two-point or multipoin} obtained in cases gfi<2 at the

ith iteration of a RT without the use of the approximation
(3.7) can be at most of ordeef")? (for appropriatel). Ac-
cordingly, in cases oft<2, the application of the approxi-
mate relation(3.7) does not affect the leading contributions
to renormalized interactions as is infinitesimally small.
Thus, in these cases, the use of the approximaton at
each iteration step of the RT proves to be plausible, provided
that e<1. Futhermore, the RG equatiof3.20—(3.25 be-
come exact as—0 andK—oo,

IV. CRITICAL PROPERTIES OF THE MODEL

the appearance of couplings of new types; so the resulting

RG equations take a closed form. Generally, the RG equa-

tions at the (+ 1)th iteration of the RTi(>2) can be written
as(for K>1 ande<1)

KD =KW — 1189601 800)2+ 88068 5001601, (3.20

A. The case ofu<?2

It follows from Egs.(3.13, (3.19, and (3.25 that, for
u<2, the renormalized weak couplings tend to zero under
the successive application of the RT. Thus, the fixed point
solution to Eq. (3.29 is given by &f=&")=0,
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I=0,1, ... . Hence, in the case pi<2, Egs.(3.20—(3.295 Ke=—%lne. (4.9
reduce for sufficiently large (and forK>1) to RG equa- N ] _
tions for the Ising model on the pure SG latticd. Conse-  Thus, the critical temperature for the model wijih=2 is
quently, the model withu<2 does not reveal critical prop- 9reater than zero, as long as-0. It can readily be proved

erties at nonzero temperatures, despite the existence in tffgat the derivative matrix, obtained by linearizing the RG
system intrahole interactions, 1=0,1, ... . equations(3.20—(3.29, has at the fixed poinf4.2—(4.7)

It should be noted that Eq¢3.20—(3.25 have been de- ©ne eigenvalue greater than 1. This eigenvalue, determined
rived for K>1. Thus, these relations do not hold for ratherSimply by7\=(<9K£5'+l)/c9K(5'))K;, has to ordee the form
small values oK, and cannot be used for studying properties N
of the system at high temperatures. Clearly, the quasifractal A=1tze. (4.9
”?Ode' with <2 does. not reveal .C”t'cal behavior also at Hence, the critical exponemt characterizing the behavior of
h|g|h temperatures, as it does not display long-range ordering,o correlation length at criticality y=Inb/in\ with b=2
at low nonzero temperatures. being the length rescaling facjds given, fore<1, by

B. The case ofu=2 In2

. . V: T -
In this special case ofu=2, one hass{"=(s"),)? 4e
1=0,1,...,i=12,..., so Eq.(3.29 implies that As a result of the dependence of this index on the strength of
S0P 201 @.1) the weak interac_tions, critical properties of _tht_a system with
' Lo T ' pu=2 are nonuniversal. Note that, in the limit—0, one
recovers values df. and v for the Ising model on the pure
SG lattice, i.e., one obtain§,=«~ andv= [7].

(4.10

This means that, fon=2, the RT leaves the weak interac-
tions unchanged, i.es{"=¢,, 1=0,1,...,i=1,2,... . It
can be easily seen that, in this case, E§20—(3.25 have C. The case ofu>2

a nontrivial fixed point solution given b
P g y It follows from Egs.(2.2), (3.13, (3.19, and(3.2H that,

K¥ =00, (4.2 in the case of u=2, the weak interactionss("
I=0,1,...,increase under the R{even for arbitrary small
x_ 1 3 but nonzerce). Therefore, from a certain iteration stemf
Kz=-3lne+ ze, (43 ihe RT, the renormalized coupling” , 1=0,1,. .., cannot
be regarded as weak. Then, the approximate rel&8af for
K3=—zlne + je, (4.4 the Boltzmann weights, associated with intrahole renormal-
ized interactions, and the RG equatidB820—(3.25 are no
K} =0, (4.5 longer valid. Thus, the problem of the existence of critical
points reflecting strong inhomogeneity of the system with
K =—1lIne, (4.6) m>2 cannot be studied by employing a simple RG method

that separately treats strong and weak interactions, as the RG

approach used above. Consequently, the analysis of critical
4.7 ) .

properties of the model witlw>2 appears to be substan-
tially more complicated than the one presented for the case
of u=<2, and it will not be carried out here.

8|*=s|, 1=0,1,...,

with 87/683 =1, where &) =exp(—2K}). (Note thatK},

3, andKg have been determined to orde) It should be
pointed out that, althougK? =«, K} =, the fixed point
given by Egs.(4.2—-(4.7) can indeed be considered a non-
trivial one. This follows from the fact that the relative num-  The quasifractal Ising model introduced in this paper is
bers of the interaction&{) andK{’ (i.e., the ratios of the defined on a triangular lattice which, for a finite number of
numbers oK(l‘) and Kg‘) to the total number of renormalized lattice points, has the shape of a triangle. The model involves
strong interactionstend to zero as the thermodynamic limit NN ferromagnetic interactions of two types: strong and in-
is approached. Then, in this limit, the coupling$” and finitesimally small. The strong couplings act between spins

KS,‘) do not affect thermodynamic properties of the system, 0}ocated at points which form a SG lattice of external borders

more precisely, do not contribute to the density of the freec0|nC|d|ng with borders of the triangular lattice. The weak

. . . i Interactions are assumed to act inside all holes of the gasket.
energy of the system. Obviously, since the |nteractlﬁﬁ§ h i dditionall ved by th
dK{) act along edges of the largest triangle of the SGeoc_couPlings are additionally parametrized by the expo-
ana iy g edg 9 9 nentw=0, in such a manner that they are allowed to vary in

lattice, they are much less mfluenceq _by the nqnunlformn_ya hierarchical manner as larger and larger triangles within
of the system, compared to the remaining couplings. This ifgies of the gasket are taken into account. The case of
why the interaction {’ andK behave in a quite different w=0 concerns the system in which all weak interactions are
manner than do the couplings$’, K, and K, as  of an equal strength. It should be noted that the strong inho-
| —00. mogeneity of the model is a consequence of extremal varia-
Taking into account that Eq3.24) does not involve in-  tjon of interaction strengths in all length scales rather than a
teractions of other types thaﬁs'), one immediately finds for result of dilution of couplings and/or lattice sites. Thus, as
e<<1 the critical temperature parameteg: long ase>0, there always exist linkage paths across the

V. DISCUSSION
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whole system(for each value ofu), in contrast to dilute pearance of weak interactions, i.e., by intensifying the
systems in which infinite clusters do not occur when thenonuniformity of the system, defined on the uniform triangu-
concentration of couplings is smaller than a threshold valudar lattice.

or when the concentration of site defects exceeds a critical Finally, consider the case gf>2. In this case, the suc-

value[1]. cessive use of the RT leadat least for some initial itera-

~ According to the argumentation of the preceding sectiontiong) to increasing the renormalized weak interactions, so

if ©<2, the system does not undergo critical phenomena ahey can no longer be treated as being small. Such an effect

finite temperatures, although it is infinitely ramified. Thus, of homogenization of the studied system is similar to the

at nonzero temperatures wher<2. Then, the behavior of yarious fractal models with microscopic anisotrdg]. As

the system witte <1 andu <2 exhibits some similarities to 5 consequence of the homogenization, the problem of inves-

the behavior of the Ising system on the pure SG latticetigating critical phenomena in the quasifractal model with

Hence, there must exist, for a given<2, a threshold value |, >2 appears to be much more involved than in the case of

of £, above which the system displays critical phenomena a}, <2 Obviously, the model with>2 must reveal non-

nonzero temperaturénote that, fore=K and =0, the trjvial critical properties, since such properties are displayed

model reduces to the homogeneous Ising model on the triarby the model in the case @f=2 (note that each interaction

gular latticg. Obviously, the threshold value efis expected e, 1=0,1,. .., isstronger foru>2 than foru=2).

to depend oru. In conclusion, there is a simple criterion of the existence
In the case ofu=2, the quasifractal model exhibits criti- of nontrivial critical phenomena in the quasifractal model:

cal behavior at nonzero temperaturgzovided that the the model with infinitesimally smak exhibits critical prop-

strengthe of weak interactions is greater than zerdhe  erties at nonzero temperatures if the hierarchy exponent

critical exponentr found for the model withu=2 turns out ;=2 An open question is the determination of conditions of

to depend ore, and thereby the critical properties of the the occurrence of nontrivial critical behavior in the nonuni-

system are in this case nonuniversal. #s 0, the behavior  form model where is not infinitesimally small.

of the system shows a smooth crossover to the behavior of

the Ising model on the pure SG lattice. As distinct from the

previously studied fractal-to-Euclidean crossoj@}, which ACKNOWLEDGMENTS

arises by changing the construction of the underlying SG-
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