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A strongly nonuniform Ising model with ferromagnetic nearest-neighbor interactions on a regular triangular
lattice is considered. The interactions are assumed to be of two kinds: couplings of arbitrary large strength,
distributed between points forming a Sierpin´ski-gasket lattice, and infinitesimally small couplings acting within
all holes of the gasket. The weak interactions are, in general, allowed to vary in a hierarchical way. Using a
renormalization-group method, critical properties of the system are studied. In particular, a condition for the
occurrence of critical phenomena at nonzero temperatures is established. It is also shown that, in a special case,
the investigated model displays nonuniversal critical properties.@S1063-651X~96!14511-6#

PACS number~s!: 64.60.Ak, 61.43.Hv, 05.50.1q, 05.70.Fh

I. INTRODUCTION

The effect of inhomogeneity on the critical behavior of
magnetic systems has been considered in various contexts,
e.g., disorder@1#, coupling randomness@2#, quasiperiodic
structures@3#, or aperiodic structures with modulated inter-
actions on regular lattices@4#. Very special examples of non-
uniform systems are models defined on fractal lattices@5#.
Due to a strong nonuniformity~on all length scales!, critical
properties of systems in this category differ, in general, con-
siderably from those of respective translationally invariant
systems@5#. In particular, it seems to be impossible to clas-
sify fractal spin systems according to universality by a finite
number of geometric parameters@6#. It has been argued that
critical phenomena at nonzero temperatures cannot occur in
short-interacting fractal models when their ramification order
is finite @7#. One of the most known finitely-ramified self-
similar ~scale-invariant! systems is the nearest-neighbor
~NN! Ising model on the Sierpin´ski-gasket~SG! lattice. In
spite of the fact that this model does not display nontrivial
critical phenomena, it is especially interesting because of its
distinctive thermodynamic properties@8#. On the other hand,
it has been shown that Ising systems defined on SG-like
lattices involving higher length generators acquire gradually
thermodynamic properties of the translationally invariant
Ising system on the triangular lattice, as the lattice construc-
tion generators tend to infinity@9#. Clearly, the behavior of
higher members of the SG family exemplifies a crossover
from fractal to uniform~Euclidean! structures.

Generally, the inhomogeneity of lattice systems has two
origins, i.e., the nonuniformity of lattices and variation of
interactions. It is well known that both the types of inhomo-
geneity can affect critical properties of spin systems, com-
pared with properties of pure~homogeneous! systems. The
question of the influence of inhomogeneity on critical behav-
ior of spin systems belongs to the most important problems
of the theory of critical phenomena.

In this paper, a ferromagnetic Ising model which, in some
sense, is intermediate between spin systems on fractal and
translationally invariant lattices, is considered. The model
involves NN interactions of two kinds, i.e., relatively large
couplings acting between points which form the SG lattice,
and infinitesimally small couplings distributed within all

holes of the SG lattice. Additionally, the infinitesimally
small interactions are parametrized by a hierarchy exponent,
so as to allow them to vary in a hierarchical manner as in-
trahole triangles of increasing linear size are taken into ac-
count. As a consequence of extreme disproportion between
strengths of interactions of the two types, the system is
strongly nonuniform in all length scales. Thus, it resembles
self-similar fractal systems, although it is defined on a trans-
lationally invariant lattice; so the model can be treated in
some sense as intermediate between fractal and Euclidean
systems. Therefore, the considered strongly nonuniform
model is called here thequasifractalIsing model.

The presence of weak interactions inside holes of the SG
lattice causes the system to be infinitely ramified. Then, at
least for some values of the hierarchy exponent, the model
can be expected to reveal critical phenomena at nonzero tem-
peratures. Using here a renormalization-group~RG! method,
it is shown that the system displays qualitatively different
properties, according to the value of the hierarchy exponent,
and a condition for the occurrence of nontrivial critical phe-
nomena is established. For a special value of the hierarchy
exponent, the system is proved to exhibit nonuniversal criti-
cal behavior. In this case, results obtained for the critical
temperature and the correlation length critical exponentn
become exact as the interaction strength of weak~intrahole!
interactions tends to zero. The limit passing can be regarded
as a smooth Euclidean-to-fractal crossover, accomplished by
enhancing the nonuniformity of the system in consequence
of diminishing the interaction strength for a part of the cou-
plings.

II. THE QUASIFRACTAL MODEL

The inhomogeneous spin Ising model considered in this
paper is defined on a triangular lattice, which, as a whole, has
a triangle shape~for any finite number of lattice points!. The
spins s i561, i51,2, . . . , are coupled by ferromagnetic
NN interactions of two kinds. Interactions of the first type,
K, are assumed to act only between points forming the SG
lattice, as shown in Fig. 1, while interactions of the second
type are distributed inside all holes of the gasket. Couplings
of the latter type are taken to be infinitesimally small. In
addition, these weak interactions are allowed to vary in

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6029~6!/$10.00 6029 © 1996 The American Physical Society



strength as«1/m
l
, «!1, m>0, when intrahole triangles of

increasing linear sizes 2l , l50,1, . . . ~in units of the lattice
constant! are taken into account~as depicted in Fig. 1!. Con-
sequently, if the parameterm, the so-called hierarchy expo-
nent, is nonzero, the weak couplings change in a hierarchical
manner. The interactionsK are assumed to be relatively
large, i.e.,K@«.

Thus, the model represents strongly inhomogeneous Ising
systems of nonuniform coupling structures in all length
scales. The inhomogeneity originates from an extreme dis-
proportion of strengths of the interactionsK and « l ,
l50,1, . . . , aswell as from their nonuniform distribution on
the lattice. The strong interactionsK act on the SG lattice,
whereas the weak interactions« l , l50,1, . . . , areassumed
to act inside all holes of the SG, and, form.0, they are
allowed to follow a hierarchical structure. In consequence of
the special distribution of strong couplings, the model re-
sembles a fractal system defined on the SG lattice. However,
owing to the occurrence of weak couplings, the system is
infinitely ramified, and can be expected to reveal critical phe-
nomena at nonzero temperatures~at least for some values of
m) as long as«.0.

Accordingly, the model presented in this paper can be
used to study the question of disappearing nontrivial critical
phenomena as a result of a smooth passage from infinitely to
finitely ramified systems, through a smooth enhancing of the
inhomogeneity of couplings.~As yet, this problem has not
been investigated.! It will be shown below that the model is
also useful for examining the question of how interaction
inhomogeneities on all length scales influence critical prop-
erties of Ising systems, compared with pure~homogeneous!
systems.

The Hamiltonian for the model is given by

H~$s%!/kBT52K (
^ i , j &SG

s is j2(
l50

`

« l (
^ i , j &H

~ l !

s is j , ~2.1!

where the first summation runs over NN pairs of sites in the
SG lattice, the second summation is over construction levels
of intrahole triangles, and the third summation is over NN
pairs of lattice points on edges of all intrahole triangles of

sizes 2l , put down in gasket holes of linear sizes 2m with
m5 l11,m12, . . . . Theweak interactions« l are assumed
to be of the form

« l5«1/m
l
, l50,1, . . . ~2.2!

with «0[«.

III. RG TREATMENT OF THE MODEL FOR µ<2

Critical properties of the quasifractal model are studied
here using a RG method based on the decimation transfor-
mation. It is well known that, in cases of infinitely ramified
systems, just as in the case of the system under examination
here, successive applications of this transformation generate
interactions of new types and, thereby, the decimation cannot
be exactly performed. However, as will be argued below, the
application of a renormalization transformation~RT! to the
studied system withm<2 can be simplified by modifying
local Boltzmann weights@10# which involve weak interac-
tions. The modification of these Boltzmann weights in the
case ofm<2 will be shown to enable one to obtain RG
equations in a closed form.

A. Boltzmann weights for «!1

To present the way of approximating local Boltzmann
weights involving weak interactions, consider spinss i ,
s j , andsk placed in vertices of an elementary triangle in a
corner of a hole of the SG@see Fig. 2~a!#. Then, the corre-
sponding Boltzmann weight of the spin configurations
(s i ,s j ,sk) is given by

w0~s i ,s j ,sk!5eKs i ~s j1sk!1«s jsk. ~3.1!

Since«!1, possible critical phenomena in the studied sys-
tem can be expected at rather low temperatures, i.e., at
K@1. Hence, restricting oneself toK being very large, one
gets for the spin configurations$1,2,2% and$2,1,1%

FIG. 1. Configuration of interactions in the quasifractal model.
The system of linear size 23 ~a!. The intrahole sublattices of linear
sizes: 2~b!, 22 ~c!, and 23 ~d!. The double lines represent interac-
tions K, distributed on the SG sublattice. The dashed, solid, and
solid bold lines represent intrahole interactions«, «1, and«2, re-
spectively.

FIG. 2. ~a!,~b!,~c! Intrahole elementary triangles with appropri-
ate couplings@m>1 in ~b!, and l>1, m>1 in ~c!#. ~d!,~e!,~f! The
effect of the use of the relations~3.7! and ~3.10! for local Boltz-
mann weights associated with respective triangles.
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w0~s i ,s j ,sk!5e2«v0~s i ,s j ,sk!1O~d«! ~3.2!

with

v0~s i ,s j ,sk!5e~K1«!s i ~s j1sk! ~3.3!

and

d5e22K, ~3.4!

while for remaining configurations of spins at vertices of the
elementary triangle

w0~s i ,s j ,sk!5e2«v0~s i ,s j ,sk!. ~3.5!

Consequently, the Boltzmann weightsw0 can be approxi-
mated for«!1 andK@1 by the weightsv0 ~up to the factor
e2«).

Analogously, one can express other local Boltzmann
weights, associated with elementary triangles situated inside
holes of the SG@see Figs. 2~b! and 2~c!#. It proves that, in the
case ofm<2, all local intrahole Boltzmann weights

wl ,m~s i ,s j ,sk!5ef ls is j1fms isk1«s jsk, ~3.6!

wheref05K, f l5« l , l51,2, . . . , can bewritten for the
spin configurations$1,2,2% and$2,1,1% as

wm,l~s i ,s j ,sk!5e2«v l ,m~s i ,s j ,sk!1O~D l ,m«!, ~3.7!

with

v l ,m~s i ,s j ,sk!5e~f l1«!s is j1~fm1«!s isk, ~3.8!

D l ,m5e2f l2fm, l50,1, . . . , m50,1, . . . , ~3.9!

whereD0,0[d, and, for remaining configurations of spins
connected with appropriate intrahole triangles, can be ex-
pressed as

wl ,m~s i ,s j ,sk!5e2«v l ,m~s i ,s j ,sk!. ~3.10!

Accordingly, for«!1, the local Boltzmann weightswl ,m can
be represented in the case ofm<2 by the weightsv l ,m ~up to
the multiplicative constante2«). Such a representation is
approximate for two configurations of spins assigned to a
given elementary triangle, and is exact for the remaining six
spin configurations. The resulting approximations are highly
accurate for those weightswl ,m which involve at least one
interactionK ~note thatD l ,0→0, l50,1, . . . , andD0,m→0,
m50,1, . . . , asK→`), whereas, for weightswl ,m with l
Þ0 andmÞ0, associated with elementary triangles that are
not adjacent to hole borders, they appear to be much less
precise. However, as will be shown below, when the RT is
performed, the approximation forlÞ0 andmÞ0 turns out to
be also reasonable~provided thatm<2).

It should be pointed out that the representation of the local
Boltzmann weightswl ,m by the modified weightsv l ,m @ac-
cording to Eqs.~3.6!–~3.10!# corresponds to a removal of the
weak interaction«, attributed to a given elementary intrahole
triangle, and to respective changes of the remaining two in-
teractions ascribed to the triangle@as shown in Figs. 2~d!,

2~e!, and 2~f!#. Clearly, such a modification of local Boltz-
mann weights resembles the Migdal-Kadanoff moving-bond
RG procedure@11#.

B. RG equations for µ<2

In cases ofm<2, possible critical properties of the system
can be studied by applying the relations~3.7! and ~3.10!.
Then, the RT can indepedently be performed for the sub-
system on the SG lattice and for intrahole subsystems~asso-
ciated with holes of the SG lattice!, by combining the deci-
mation transformation and the decoration-iteration
transformation@12#. It should be pointed out that the use of
Eqs.~3.7! and ~3.10! for intrahole subsystems leads to a re-
duction of the decimation transformation to the decoration-
iteration transformation, as shown in Fig. 3. Consequently,
employing Eqs.~3.7!, ~3.10!, and applying the decimation
transformation for the subsystem on the SG lattice and the
decoration-iteration transformation for intrahole subsystems
~see Fig. 3!, yields the relations~to ordersd2 and«)

K1
~1!5K2d2, ~3.11!

K2
~1!5K2d21«, ~3.12!

« l
~1!5« l11

2 , l50,1, . . . , ~3.13!

where the superscript specifies the particular iteration of the
RT and subscripts in Eqs.~3.11! and ~3.12! label strong in-
teractions of different kinds. Interactions of both kinds are
between NN pairs of spins, but the couplingsK1

(1) act along
edges of the largest triangle of the SG lattice, while the cou-

FIG. 3. The effect of using the RT combined with the relations
~3.7! and~3.10!. ~a! The initial quasifractal system of a finite linear
size ~the couplings are indicated in the same way as in Fig. 1!. ~b!
The system after an application of the approximation for local
Boltzmann weights, according to relations~3.7! and ~3.10!. The
black circles indicate spins over which the decoration-iteration
transformation is to be carried out.~c! The system after applying the
RT.
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plingsK2
(1) act along the remaining edges of the SG lattice,

as shown in Figs. 4~a! and 4~b!. Thus, in the case of«!1,
the first use of the RT generates NN interactions of two
types, but it does not generate any two-point long-range cou-
plings nor multipoint interactions.

As a result of the second iteration of the RT@with the use
of relations~3.7! and~3.10! for the renormalized interactions
~3.11!, ~3.12!, and~3.13!#, there appear NN couplings of five
types @see Figs. 4~b! and 4~c!#. For K@1 and «!1, the
respective RG relations have the form

K1
~2!5K1

~1!2~d2
~1!!2, ~3.14!

K2
~2!5K2

~1!2 1
2 @~d1

~1!!21~d2
~1!!2#1«~1!, ~3.15!

K3
~2!5K2

~1!2 1
4 @3~d1

~1!!21~d2
~1!!2#1«~1!, ~3.16!

K4
~2!5K1

~1!2 1
4 @5~d1

~1!!22~d2
~1!!2#, ~3.17!

K5
~2!5K2

~1!2~d2
~1!!21«~1!, ~3.18!

« l
~2!5~« l11

~1! !2, l50,1, . . . , ~3.19!

wheredn
(1)5exp(22Kn

(1)), n51,2, . . . ,5, and« (1)[«0
(1) .

Subsequent iterations of the RT@combined with relations
~3.7! and ~3.10! for renormalized couplings# do not lead to
the appearance of couplings of new types; so the resulting
RG equations take a closed form. Generally, the RG equa-
tions at the (i11)th iteration of the RT (i.2) can be written
as ~for K@1 and«!1)

K1
~ i11!5K1

~ i !2 1
2 @~d3

~ i !d4
~ i !/d1

~ i !!21d2
~ i !d3

~ i !d4
~ i !/d1

~ i !#, ~3.20!

K2
~ i11!5K3

~ i !1K4
~ i !2K1

~ i !2 1
2 @~d1

~ i !!21~d3
~ i !!2

2~d3
~ i !d4

~ i !/d1
~ i !!22d2

~ i !d3
~ i !d4

~ i !/d1
~ i !

12d1
~ i !d2

~ i !d3
~ i !/d4

~ i !#1«~ i !, ~3.21!

K3
~ i11!5K5

~ i !2 1
4 @2~d3

~ i !!21~d3
~ i !!4/~d5

~ i !!21~d3
~ i !d4

~ i !/d5
~ i !!2#

1«~ i !, ~3.22!

K4
~ i11!5K3

~ i !1K4
~ i !2K5

~ i !2 1
4 @6~d5

~ i !!22~d3
~ i !!4/~d5

~ i !!2

2~d3
~ i !d4

~ i !/d5
~ i !!2#, ~3.23!

K5
~ i11!5K5

~ i !2~d5
~ i !!21«~ i !, ~3.24!

« l
~ i11!5~« l11

~ i ! !2, l50,1, . . . , ~3.25!

wheredn
( i )5exp(22Kn

(i)), n51,2, . . . ,5, and« ( i )[«0
( i ) . The

division of the renormalized NN couplings into five classes
is a consequence of the specific nonuniform structure of the
system. Obviously, the numbers of couplings included in
particular classes are different. The numbers of the interac-
tions K1

( i ) andK2
( i ) , i.2, do not depend on the size of the

system and amount toN156 andN253, respectively. In a
finite renormalized system, which contains 3k, k52,3, . . . ,
renormalized strong interactions~acting on the SG lattice!,
there are N353(2k24) couplings of the typeK3

( i ) ,
N453(2k2122) couplings K4

( i ) , and N553k@1
23(2/3)k21]29 couplingsK5

( i ) . Accordingly, the relative
number of interactions from a given class~the number of
interactions belonging to a given class per the total number
of strong interactions! is nonzero in the thermodynamic limit
only for the interactions of the typeK5

( i ) .
It is seen from Eqs.~2.2!, ~3.13!, ~3.19!, and ~3.25! that,

for m<2, the weak interactions« l
( i ) , i51,2, . . . , do not in-

crease under the RT, i.e.,« l
( i )>« l

( i11) l50,1, . . . ,
i51,2, . . . . However, the relations~3.13!, ~3.19!, and
~3.25! have been derived by taking advantage of the approxi-
mation ~3.7!, which, for lÞ0 andmÞ0, is not so well jus-
tifiable as in the case ofl50 and/orm50. Nevertheless,
leading contributions to any renormalized weak interactions
~two-point or multipoint! obtained in cases ofm<2 at the
i th iteration of a RT without the use of the approximation
~3.7! can be at most of order (« l

( i ))2 ~for appropriatel ). Ac-
cordingly, in cases ofm<2, the application of the approxi-
mate relation~3.7! does not affect the leading contributions
to renormalized interactions as« is infinitesimally small.
Thus, in these cases, the use of the approximation~3.7! at
each iteration step of the RT proves to be plausible, provided
that «!1. Futhermore, the RG equations~3.20!–~3.25! be-
come exact as«→0 andK→`.

IV. CRITICAL PROPERTIES OF THE MODEL

A. The case ofµ<2

It follows from Eqs. ~3.13!, ~3.19!, and ~3.25! that, for
m,2, the renormalized weak couplings tend to zero under
the successive application of the RT. Thus, the fixed point
solution to Eq. ~3.25! is given by « l*[« l

(`)50,

FIG. 4. The SG subsystem of a renormalized quasifractal sys-
tem. ~a! The distribution of renormalized strong couplings. The
white, hatched, and black upward-pointed elementary triangles are
associated with different sets of NN interactions.~b! The case of
i51 ~the system after the first application of the RT!. All interac-
tions K1

(1) ~connected with white and hatched triangles! act along
borders of the SG~i.e., along edges of the largest triangles of the
SG!. ~c! The case of successive iterations of the RT (i>2). The
interactionsK1

( i ) ~associated only with the white triangle! and the
interactionsK4

( i ) ~ascribed to hatched triangles! are distributed along
the borders of the SG.
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l50,1, . . . . Hence, in the case ofm,2, Eqs.~3.20!–~3.25!
reduce for sufficiently largei ~and forK@1) to RG equa-
tions for the Ising model on the pure SG lattice@7#. Conse-
quently, the model withm,2 does not reveal critical prop-
erties at nonzero temperatures, despite the existence in the
system intrahole interactions« l , l50,1, . . . .

It should be noted that Eqs.~3.20!–~3.25! have been de-
rived for K@1. Thus, these relations do not hold for rather
small values ofK, and cannot be used for studying properties
of the system at high temperatures. Clearly, the quasifractal
model with m,2 does not reveal critical behavior also at
high temperatures, as it does not display long-range ordering
at low nonzero temperatures.

B. The case ofµ52

In this special case ofm52, one has« l
( i )5(« l11

( i ) )2,
l50,1, . . . , i51,2, . . . , so Eq.~3.25! implies that

« l
~ i11!5« l

~ i ! , l50,1, . . . . ~4.1!

This means that, form52, the RT leaves the weak interac-
tions unchanged, i.e.,« l

( i )5« l , l50,1, . . . , i51,2, . . . . It
can be easily seen that, in this case, Eqs.~3.20!–~3.25! have
a nontrivial fixed point solution given by

K1*5`, ~4.2!

K2*52 1
4 ln«1 3

4«, ~4.3!

K3*52 1
4 ln«1 1

4«, ~4.4!

K4*5`, ~4.5!

K5*52 1
4 ln«, ~4.6!

« l*5« l , l50,1, . . . , ~4.7!

with d1* /d4*51, where dn*5exp(22Kn* ). ~Note that K2* ,
K3* , andK5* have been determined to order«.! It should be
pointed out that, althoughK1*5`, K4*5`, the fixed point
given by Eqs.~4.2!–~4.7! can indeed be considered a non-
trivial one. This follows from the fact that the relative num-
bers of the interactionsK1

( i ) andK4
( i ) ~i.e., the ratios of the

numbers ofK1
( i ) andK4

( i ) to the total number of renormalized
strong interactions! tend to zero as the thermodynamic limit
is approached. Then, in this limit, the couplingsK1

( i ) and
K4
( i ) do not affect thermodynamic properties of the system, or

more precisely, do not contribute to the density of the free
energy of the system. Obviously, since the interactionsK1

( i )

and K4
( i ) act along edges of the largest triangle of the SG

lattice, they are much less influenced by the nonuniformity
of the system, compared to the remaining couplings. This is
why the interactionsK1

( i ) andK4
( i ) behave in a quite different

manner than do the couplingsK2
( i ) , K3

( i ) , and K5
( i ) , as

i→`.
Taking into account that Eq.~3.24! does not involve in-

teractions of other types thanK5
( i ) , one immediately finds for

«!1 the critical temperature parameterKc :

Kc52 1
4 ln«. ~4.8!

Thus, the critical temperature for the model withm52 is
greater than zero, as long as«.0. It can readily be proved
that the derivative matrix, obtained by linearizing the RG
equations~3.20!–~3.25!, has at the fixed point~4.2!–~4.7!
one eigenvalue greater than 1. This eigenvalue, determined
simply byl5(]K5

( i11)/]K5
( i ))K

5*
, has to order« the form

l511 1
4 «. ~4.9!

Hence, the critical exponentn characterizing the behavior of
the correlation length at criticality (n5 lnb/lnl with b52
being the length rescaling factor! is given, for«!1, by

n5
ln2

4«
. ~4.10!

As a result of the dependence of this index on the strength of
the weak interactions, critical properties of the system with
m52 are nonuniversal. Note that, in the limit«→0, one
recovers values ofKc andn for the Ising model on the pure
SG lattice, i.e., one obtainsKc5` andn5` @7#.

C. The case ofµ>2

It follows from Eqs.~2.2!, ~3.13!, ~3.19!, and~3.25! that,
in the case of m52, the weak interactions« l

( i ) ,
l50,1, . . . , increase under the RT~even for arbitrary small
but nonzero«). Therefore, from a certain iteration stepi of
the RT, the renormalized coupling« l

( i ) , l50,1, . . . , cannot
be regarded as weak. Then, the approximate relation~3.7! for
the Boltzmann weights, associated with intrahole renormal-
ized interactions, and the RG equations~3.20!–~3.25! are no
longer valid. Thus, the problem of the existence of critical
points reflecting strong inhomogeneity of the system with
m.2 cannot be studied by employing a simple RG method
that separately treats strong and weak interactions, as the RG
approach used above. Consequently, the analysis of critical
properties of the model withm.2 appears to be substan-
tially more complicated than the one presented for the case
of m<2, and it will not be carried out here.

V. DISCUSSION

The quasifractal Ising model introduced in this paper is
defined on a triangular lattice which, for a finite number of
lattice points, has the shape of a triangle. The model involves
NN ferromagnetic interactions of two types: strong and in-
finitesimally small. The strong couplings act between spins
located at points which form a SG lattice of external borders
coinciding with borders of the triangular lattice. The weak
interactions are assumed to act inside all holes of the gasket.
These couplings are additionally parametrized by the expo-
nentm>0, in such a manner that they are allowed to vary in
a hierarchical manner as larger and larger triangles within
holes of the gasket are taken into account. The case of
m50 concerns the system in which all weak interactions are
of an equal strength. It should be noted that the strong inho-
mogeneity of the model is a consequence of extremal varia-
tion of interaction strengths in all length scales rather than a
result of dilution of couplings and/or lattice sites. Thus, as
long as«.0, there always exist linkage paths across the
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whole system~for each value ofm), in contrast to dilute
systems in which infinite clusters do not occur when the
concentration of couplings is smaller than a threshold value,
or when the concentration of site defects exceeds a critical
value @1#.

According to the argumentation of the preceding section,
if m,2, the system does not undergo critical phenomena at
finite temperatures, although it is infinitely ramified. Thus,
the weak interactions are unable to establish long-range order
at nonzero temperatures whenm,2. Then, the behavior of
the system with«!1 andm,2 exhibits some similarities to
the behavior of the Ising system on the pure SG lattice.
Hence, there must exist, for a givenm,2, a threshold value
of «, above which the system displays critical phenomena at
nonzero temperature~note that, for«5K and m50, the
model reduces to the homogeneous Ising model on the trian-
gular lattice!. Obviously, the threshold value of« is expected
to depend onm.

In the case ofm52, the quasifractal model exhibits criti-
cal behavior at nonzero temperatures~provided that the
strength« of weak interactions is greater than zero!. The
critical exponentn found for the model withm52 turns out
to depend on«, and thereby the critical properties of the
system are in this case nonuniversal. As«→0, the behavior
of the system shows a smooth crossover to the behavior of
the Ising model on the pure SG lattice. As distinct from the
previously studied fractal-to-Euclidean crossover@9#, which
arises by changing the construction of the underlying SG-
like lattices towards the triangular lattice, the crossover dem-
onstrated in the quasifractal model is caused by the disap-

pearance of weak interactions, i.e., by intensifying the
nonuniformity of the system, defined on the uniform triangu-
lar lattice.

Finally, consider the case ofm.2. In this case, the suc-
cessive use of the RT leads~at least for some initial itera-
tions! to increasing the renormalized weak interactions, so
they can no longer be treated as being small. Such an effect
of homogenization of the studied system is similar to the
effect of restoration of macroscopic isotropy, observed in
various fractal models with microscopic anisotropy@13#. As
a consequence of the homogenization, the problem of inves-
tigating critical phenomena in the quasifractal model with
m.2 appears to be much more involved than in the case of
m<2. Obviously, the model withm.2 must reveal non-
trivial critical properties, since such properties are displayed
by the model in the case ofm52 ~note that each interaction
« l , l50,1, . . . , is stronger form.2 than form52).

In conclusion, there is a simple criterion of the existence
of nontrivial critical phenomena in the quasifractal model:
the model with infinitesimally small« exhibits critical prop-
erties at nonzero temperatures if the hierarchy exponent
m>2. An open question is the determination of conditions of
the occurrence of nontrivial critical behavior in the nonuni-
form model when« is not infinitesimally small.
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